
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330376569

Using K-core Decomposition on Class Dependency Networks to Improve Bug

Prediction Model's Practical Performance

Article in IEEE Transactions on Software Engineering · January 2019

DOI: 10.1109/TSE.2019.2892959

CITATIONS

24
READS

213

8 authors, including:

Some of the authors of this publication are also working on these related projects:

Securing Outsourced Data in Cloud with SGX View project

Yu Qu

University of California, Riverside

27 PUBLICATIONS 307 CITATIONS

SEE PROFILE

Qinghua Zheng

Xi'an Jiaotong University

500 PUBLICATIONS 6,525 CITATIONS

SEE PROFILE

Di Cui

Xidian University

18 PUBLICATIONS 185 CITATIONS

SEE PROFILE

Ting Liu

Xi'an Jiaotong University

132 PUBLICATIONS 2,384 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yu Qu on 13 March 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330376569_Using_K-core_Decomposition_on_Class_Dependency_Networks_to_Improve_Bug_Prediction_Model%27s_Practical_Performance?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330376569_Using_K-core_Decomposition_on_Class_Dependency_Networks_to_Improve_Bug_Prediction_Model%27s_Practical_Performance?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Securing-Outsourced-Data-in-Cloud-with-SGX?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Riverside?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xidian-University?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-dbe9aa9f329742e25bb0658393edb4f7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDM3NjU2OTtBUzoxMDAwODQ1NTQ2MTA2ODgwQDE2MTU2MzE1ODExNjU%3D&el=1_x_10&_esc=publicationCoverPdf

Using K-core Decomposition on Class
Dependency Networks to Improve Bug

Prediction Model’s Practical Performance
Yu Qu ,Member, IEEE, Qinghua Zheng,Member, IEEE, Jianlei Chi, Yangxu Jin,

Ancheng He, Di Cui, Hengshan Zhang, and Ting Liu ,Member, IEEE

Abstract—In recent years, Complex Network theory and graph algorithms have been proved to be effective in predicting software

bugs. On the other hand, as a widely-used algorithm in Complex Network theory, k-core decomposition has been used in software

engineering domain to identify key classes. Intuitively, key classes are more likely to be buggy since they participate in more functions

or have more interactions and dependencies. However, there is no existing research uses k-core decomposition to analyze software

bugs. To fill this gap, we first use k-core decomposition on Class Dependency Networks to analyze software bug distribution from a new

perspective. An interesting and widely existed tendency is observed: for classes in k-cores with larger k values, there is a stronger

possibility for them to be buggy. Based on this observation, we then propose a simple but effective equation named as top-core which

improves the order of classes in the suspicious class list produced by effort-aware bug prediction models. Based on an empirical study

on 18 open-source Java systems, we show that the bug prediction models’ performances are significantly improved in 85.2 percent

experiments in the cross-validation scenario and in 80.95 percent experiments in the forward-release scenario, after using top-core.

The models’ average performances are improved by 11.5 and 12.6 percent, respectively. It is concluded that the proposed top-core

equation can help the testers or code reviewers locate the real bugs more quickly and easily in software bug prediction practices.

Index Terms—Bug prediction, software defects, complex network, class dependency network, effort-aware bug prediction

Ç

1 INTRODUCTION

OVER the past decade, Complex Network theory and the
related graph algorithms [1], [2], [3] have been proved

to be very effective in analyzing and predicting software
bugs (e.g., [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]). For
instance, many researchers have used network metrics
derived from software dependency networks to predict
bugs more effectively [4], [6], [7], [8], [11], [12]. Existing
researches also have designed new form of software net-
works [9], [13] or developed new quality metrics based on
software networks [10] to improve bug prediction
performances.

On the other hand, k-core decomposition [14] is an efficient
and widely-used analyzing algorithm in Complex Network
theory (for the definition of k-core decomposition, please
refer to Section 2.1). There are many application domains of
k-core decomposition. For instance, k-core decomposition

has been successfully used in social network analysis [15],
visualization of large networks [16], analyzing protein inter-
action networks [17], [18], etc.

Researchers have started using k-core decomposition in
software engineering domain. Existing studies mainly
focused on using k-core decomposition to identify key clas-
ses in software [19], [20], [21]. Intuitively, key classes are
more likely to contain bugs since they participate in more
functions or have more interactions and dependencies with
other modules. However, there is no existing research using
k-core decomposition to analyze software bugs.

To fill this gap, in this paper, we first use k-core decom-
position to analyze software bug distribution on Class
Dependency Networks (see Section 2.2 for more details).

Fig. 1 shows the visualizations of k-core decomposi-
tion and bug distribution of a widely-used open-source
Java logging library – Log4j (version 1.1.3). All the net-
works in Fig. 1 represent Log4j’s Class Dependency Net-
work, in which each node represents a class, and the
edges represent class dependency relations. Briefly
speaking, k-core decomposition is the process in which
the nodes of degree less than k are recursively removed
from the network. Fig. 1 shows the k-core decomposition
process on Log4j’s Class Dependency Network. As
shown in the figure, for each k value, the nodes are cate-
gorized into: nodes in this core and nodes not in this core.
For the nodes in a certain core, the figure uses different
colors to signify whether a node’s corresponding class is
buggy or not.

� Y. Qu, Q. Zheng, J. Chi, Y. Jin, A. He, D. Cui, and T. Liu are with the
Ministry of Education Key Lab For Intelligent Networks and Network
Security (MOEKLINNS), School of Electronic and Information Engineer-
ing, Xi’an Jiaotong University, Xi’an 710049, China. E-mail: {quyuxjtu,
qhzheng, tingliu}@xjtu.edu.cn, {chijianlei, jyx530, hg19941996, cuidi}
@stu.xjtu.edu.cn.

� H. Zhang is with the School of Computer Science, Xi’an University of
Posts and Telecommunications, Xi’an 710121, China.
E-mail: zhanghs@xupt.edu.cn.

Manuscript received 22 June 2018; revised 23 Dec. 2018; accepted 8 Jan. 2019.
Date of publication 14 Jan. 2019; date of current version 11 Feb. 2021.
(Corresponding author: Ting Liu.)
Recommended for acceptance by T. Zimmermann.
Digital Object Identifier no. 10.1109/TSE.2019.2892959

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

0098-5589� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1400-6740
https://orcid.org/0000-0002-1400-6740
https://orcid.org/0000-0002-1400-6740
https://orcid.org/0000-0002-1400-6740
https://orcid.org/0000-0002-1400-6740
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
mailto:
mailto:
mailto:
mailto:
mailto:

Based on Fig. 1, an interesting tendency is observed:
when k increases from one to six (the largest possible
value in Log4j’s case), the percentage of buggy classes
(pbug in Fig. 1) monotonously increases accordingly, which
means that bugs tend to cluster towards inner cores. In other
words, for classes in k-cores with larger k values, there is a
stronger possibility for them to have bugs. We have con-
ducted such analysis on 18 widely-used open-source soft-
ware systems. Such tendency is observed in most of the
cases for all the subject systems. We believe our study
and observation will provide a new perspective to study
software bugs and bug distribution. We also believe such
widely existed tendency is of great value in software
engineering practices.

Based on this observed tendency, we then propose a new
equation named as top-core to improve the order of classes
in the suspicious class list produced by effort-aware bug
prediction models to help the testers or code reviewers
locate the real bugs more quickly and easily. The intuition
of top-core is as follows:

Bug prediction techniques can identify modules of soft-
ware systems that are more likely to contain bugs. Thus, they
can provide valuable aids in software engineering practices
since they can guide software tester or code reviewer to allo-
cate the limited resources to modules that are more likely to
be buggy [22], [23]. As shown in Fig. 2, in software bug pre-
diction practices, after applying some prediction model on
the subject classes (when the granularity of bug prediction is
class), the model usually outputs a suspicious class list which
contains classes that are predicted to be buggy. Then practi-
tioners can allocate their limited efforts to bug-prone classes
so as to find more bugs with smaller efforts. In practice, it is
usually not possible to test or inspect all the classes in the sus-
picious list. Thus, if an approach can improve the order of
suspicious classes, it will be of great application value in bug
prediction practices.

Based on the above understandings, effort-aware bug
prediction models [24], [25], [26], which include the notion
of effort awareness into bug prediction, have been proposed
in recent years to help testers or code reviewers allocate

Fig. 1. The visualization of bug distribution on k-cores of the Class Dependency Network of Log4j, a widely-used logging library, when k changes from
one to six (its largest possible value in Log4j’s case).

Fig. 2. The proposed top-core equation’s role in bug prediction process.

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 349

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

their resources more effective. Can we incorporate the
observed tendency into existing effort-aware bug prediction
models? In this paper, a simple but effective equation
named as top-core is proposed to further improve the rank-
ing of classes produced by effort-aware models. Conceptu-
ally, top-core increases the relative risks of the classes located
in the inner cores of CDN so that these classes are priori-
tized in the suspicious class list.

An empirical study on 18 subject systems is conducted to
show the application value of top-core. Experimental results
show that top-core can significantly improve the perfor-
mance of bug prediction models in effort-aware scenarios.
In general, when Random Forest is used as the machine
learning algorithm in 96 experiments, top-core significantly
improves existing effort-aware (baseline) model’s perfor-
mance in 85.2 percent experiments in the cross-validation
scenario. The performance is improved by 11.5 percent in
average. In the forward-release scenario, top-core improves
baseline model’s performance in 80.95 percent experiments,
and the average improvement is 12.6 percent.

In summary we make the following contributions in this
paper:

(1) We use k-core decomposition to analyze bug distribu-
tion on Class Dependency Networks of software. An inter-
esting and widely existed tendency is observed: software
bugs tend to cluster towards inner cores. In other words, for
classes in k-cores with larger k values, there is a stronger
possibility for them to be buggy.

(2) Based on the observed tendency, a new equation top-
core is proposed to rearrange the order of classes in the sus-
picious class list produced by effort-aware bug prediction
models to help the testers or code reviewers locate the real
bugs more quickly and easily.

(3) We conduct empirical study and illustrate the effec-
tiveness of top-core through effort-aware bug prediction
experiments on 18 open-source systems. Experimental
results show that the effort-aware bug prediction models’
performances are significantly improved after using top-core.

The rest of this paper is organized as follows. Section 2
gives background knowledge on k-core decomposition and
Class Dependency Network. In Section 3, k-core decomposi-
tion is conducted on 18 subject systems’ Class Dependency
Networks to analyze bug distribution from a new perspec-
tive. Top-core equation which rearranges the order of classes
in the suspicious class list produced by effort-aware bug
prediction models is introduced and discussed in Section 4.
Sections 5 and 6 conduct empirical study to show effec-
tiveness of top-core through effort-aware bug prediction
experiments. Section 7 gives related discussions. Section 8
reviews related work. Section 9 gives the conclusions
and future work.

2 BACKGROUND

2.1 K-core Decomposition

In this section, we briefly introduce the definitions of k-core
and its related concepts. For a graph (or a network)
G ¼ V;Eð Þ of Vj j ¼ n nodes and Ej j ¼ e edges, a k-core of G
is defined as follows [14]:

Definition 1. A subgraph H ¼ C;E Cjð Þ induced by the
set C � V is a k-core or a core of order k if and only if
8v 2 C: degreeH vð Þ � k, and H is the maximum subgraph
with this property.

A k-core of G can therefore be obtained by recursively
removing all the nodes of degree less than k, until all nodes
in the remaining graph have at least degree k. Such process
is called k-core decomposition.

Definition 2. A node i has coreness c if it belongs to the c-core
but not to (c+1)-core.

The concept of a node’s coreness has been proved to be
effective to quantify and measure the node’s importance
[27] in complex networks.

Fig. 3 shows the process of k-core decomposition for a small
network [14]. In Fig. 3, each closed line contains the set of
nodes belonging to a certain k-core, while colors of the nodes
represents their coreness. In this paper, we call the k-coreswith
larger k values as “inner cores” when there is no ambiguity.

The time complexity of k-core decomposition for G is
O nþ eð Þ, which means that k-core decomposition is a highly
efficient analyzing algorithm for a network.

2.2 Class Dependency Network (CDN)

In this section, the basic concept of Class Dependency Net-
work is introduced based on an illustrative example.

For an OO program P , its Class Dependency Network
CDNP is a directed network [28]: CDNP ¼ V;Eð Þ, where
each node v 2 V represents a class in P , and the edge set E
represents the class dependency relations. Let ci denotes the
class that vi refers to. Then vi ! vj 2 E if and only if ci has
at least one class dependency relation with cj.

Fig. 3. K-core decomposition for a small network [14].

Fig. 4. An illustrative example Java code snippet and its Class Depen-
dency Network.

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4a gives an illustrative example Java code snippet.
For this snippet, Fig. 4b shows its Class Dependency Net-
work (CDN) [28]. Although other literatures [29], [30], [31]
usually only gave the processes to construct the class net-
works, the intrinsic nature of these networks is the same as
CDN’s. In CDN, nodes are classes and edges represent class
dependency relations. As shown in Fig. 4, these dependency
relations include aggregation (A!B, A!C, and B!D),
inheritance (D!C), interface implementation (D!I),
parameter types (C!B) and return types.

3 CDNS AND BUG DISTRIBUTIONS

3.1 Subject Software Systems

To empirically use k-core decomposition to study the bug
distribution on Class Dependency Networks, a data set
including 18 large open-source and widely-used Java soft-
ware systems is collected, as shown in Table 1.

Camel is a versatile integration framework based
on known Enterprise Integration Patterns; DrJava is a light-
weight Java development environment; Eclipse JDT Core is
the core component of the Eclipse IDE; Equinox framework
is an implementation of the OSGi core framework specifica-
tion; GenoViz is a tool for data visualization and data sharing
in genomics; HtmlUnit is a Java unit testing framework for
testing Web based applications; Ivy is a transitive depen-
dencymanager; Jikes RVM is a flexible open testbed to proto-
type virtual machine technologies; Jmol is a browser-based
HTML5 viewer for chemical structures in 3D; Jppf is an
open-source grid computing solution; Jump is a Geographic
Information System (GIS) written in Java; Log4j is a Java-
based logging library; Lucene is a searching and information
retrieval library; Poi is a Java API to process Microsoft Office
files; Synapse is a lightweight and high-performance Enter-
prise Service Bus (ESB); Tomcat is a Web server and servlet
container; Velocity is a Java-based template engine that pro-
vides a template language to reference objects defined in
Java code; Xalan is a library for processing XML documents.

These systems exhibit a strong heterogeneity in their
sizes, design principles and application domains. Most of

these systems are popular and widely used in practice,
especially in internet enterprise production environments.

To ensure the reproducibility of this study, all the bug
data of these subject systems is collected from publicly
available software bug data repositories. Among the subject
systems, the bug data of Camel, Ivy, Log4j, Poi, Synapse,
Tomcat, Velocity, and Xalan is obtained from the tera-
PROMISE data repository1 [32], [33]. The bug data of
Eclipse JDT Core, Equinox framework, and Lucene is from
the Bug prediction dataset2 provided by D’Ambros et al
[34]. While the bug data of DrJava, GenoViz, HtmlUnit,
Jmol, Jikes RVM, Jppf, and Jump is obtained from a newly
released data set3 which has been contributed by Shippey
et al. in their ESEM 2016 paper [35]. We used the code and
process metrics extracted and contained in these three data-
sets as the features in bug prediction experiments, also con-
sidering the reproducibility. Table 2 shows the code and
process metrics contained in the tera-PROMISE dataset and
the Bug prediction dataset. The other seven subject systems’
metrics are extracted using the JHawk tool4 [35].

Table 1 first gives the basic information of these systems.
Column Version shows the version of the corresponding
system that is contained in the aforementioned three bug
data sets. Columns SLOC, # Class, list the Source Lines Of
Code and the number of classes of the subject systems,
respectively. The last column shows the websites of these
systems. The rest of the columns in Table 1 are introduced
in the following section.

3.2 Bug Distribution in k-cores

The rest of the columns in Table 1 give the statistics of sub-
ject software systems’ CDNs and their bugs. The data in
these columns is interpreted as follows:

First, columnsNCDN andECDN show the number of nodes
and edges of each CDN, respectively. In the construction

TABLE 1
Subject Software Systems

System Version SLOC # Class NCDN ECDN CRB

T
CCDNj j pbug Website

Camel 1.6.0 98,962 2,193 2,140 6,209 908 8.8% camel.apache.org
DrJava 20080106 67,958 814 792 2,385 755 16.8% drjava.org
Eclipse JDT Core 3.4 311,316 1,796 1,728 13,868 995 11.9% www.eclipse.org/jdt/core
Equinox framework 3.4 64,301 618 570 2,484 295 22.6% www.eclipse.org/equinox
Genoviz 6.3 110,396 855 839 3,897 766 8.6% sourceforge.net/projects/genoviz
HtmlUnit 2.7 93,045 808 803 3,274 603 13.4% htmlunit.sourceforge.net
Ivy 2.0 36,636 421 418 1,851 349 9.6% ant.apache.org/ivy
Jikes RVM 3.0.0 198,496 1,906 1,851 12,073 1,203 6.7% www.jikesrvm.org
Jmol 6.0 29,855 291 282 648 280 27.7% jmol.sourceforge.net
Jppf 5.0 68,765 1,621 1,412 4,550 1,143 11.3% jppf.org
Jump 1.9.0 173,759 1,891 1,854 6,672 1,837 3.9% openjump.org
Log4j 1.1.3 11,769 199 177 591 103 21.0% logging.apache.org
Lucene 2.4.0 35,984 460 457 1,879 308 11.4% lucene.apache.org
Poi 3.0 53,097 511 505 2,473 436 55.4% poi.apache.org
Synapse 1.2 46,060 573 546 1,811 250 15.6% synapse.apache.org
Tomcat 6.0.38 166,396 1,481 1,450 6,371 812 5.3% tomcat.apache.org
Velocity 1.6.1 26,636 254 253 1,235 228 30.8% velocity.apache.org
Xalan 2.6.0 155,067 1,039 1,014 6,007 860 38.7% xalan.apache.org

1. http://openscience.us/repo/
2. http://bug.inf.usi.ch/index.php
3. https://github.com/tjshippey/ESEM2016
4. http://www.virtualmachinery.com/Jhawkmetricslist.htm

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 351

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

www.eclipse.org/jdt/core
www.eclipse.org/equinox
www.jikesrvm.org
http://bug.inf.usi.ch/index.php
http://www.virtualmachinery.com/Jhawkmetricslist.htm

processes of CDNs, only when a class has certain depen-
dency relation with other classes, its corresponding node is
added to CDN. Thus, NCDN is slightly smaller than the total
number of classes in column # Class.

Second, column CRB

T
CCDNj j shows the number of clas-

ses that appear both in CDN and the defect data sets, in the
latter they have Records to signify they are Buggy or not.
For each program, there are also some classes appeared in
bug data set but not in CDN. We have manually investi-
gated these classes and observed that most of them are
classes whose SLOC equals to zero. Column pbug is the per-
centage of buggy classes in the whole CDN.

Based on the CDNs and bug data of the subject software
systems, it is possible for us to study the bug distribution on
k-cores of CDNs. The k-core decomposition processes have
been carried out on all the 18 subject systems’ CDNs.

Fig. 5 shows the buggy classes’ percentages (pbug) in k-
cores when k changes from one to its largest possible value
in the corresponding CDN (similar to the process shown in
Fig. 1). For each k value, the number of nodes (classes) in
the corresponding k-core is given in the parentheses. A few

k values which can be easily inferred are omitted, consider-
ing the space of x-axis.

Based on Fig. 5, a very interesting tendency can be
observed: for all the subject systems, in most of the cases,
when k increases, the percentage of buggy classes increases
accordingly, which means that software bugs tend to cluster
towards inner cores in CDN. Such tendency does not hold
only for DrJava, Equinox framework, Genoviz, Tomcat, and
Xalan when k is close to its corresponding largest value.
Nevertheless, even for these five systems, the trend also
exhibits itself at most of the k values. We think the reason
for such exceptions might be that there are only quite a few
nodes in inner cores for these systems, so the statistical sig-
nificance no longer applies. For instance, in the figure of
DrJava, the numbers of nodes in 6-core and 7-core are 91
and 12 respectively, and 12 is quite a small number to
exhibit the aforementioned statistical tendency.

We believe this observation is interesting and also very
useful in software engineering practices. For instance, it
might be useful in bug prediction, bug localization, test case
prioritization, etc. In the following part of this paper, we
propose an approach based on such conclusion to re-order
the suspicious class list produced by effort-aware bug pre-
diction models. Experimental results have shown that this
approach is useful in improving the practical applications
of bug prediction techniques.

4 TOP-CORE: THE PROPOSED APPROACH

Based on the observations in Section 3.2, we propose an
equation called top-core, which rearranges the order of clas-
ses in the suspicious class list produced by effort-aware bug
prediction models to help the testers or code reviewers
locate the real bugs more quickly and easily. Since the pro-
posed equation is based on effort-aware bug prediction
models. In this section, we first give a brief introduction on
effort-aware bug prediction, followed by the introduction
and discussion on the proposed top-core equation.

4.1 Effort-Aware Bug Prediction Models

In recent years, several effort-aware bug prediction mod-
els [24], [25], [26] have been proposed to help testers or
code reviewers allocate their resources more effectively.
For instance, Mende and Koschke [24] for the first time
proposed two models to include the notion of effort
awareness into bug prediction models. One of the pro-
posed models is Rad. For a certain class c belongs to the
class set C of the system under analysis, the relative risk
Rad cð Þ is defined as:

Rad cð Þ ¼ p cð Þ � 1� E cð Þ
Emax

� �
;

where p cð Þ is the probability that class c to be buggy, E cð Þ is
the effort (which is measured using Lines Of Code) required
to inspect c, and Emax is the maximum value of E xð Þ,
8x 2 C. Then the classes belong to C are ranked according
to Rad. By using this model, the high-risk classes with less
inspection effort are prioritized in the suspicious class list.
Thus, this model significantly improved the cost effective-
ness of bug prediction models.

TABLE 2
Code Metrics and Process Metrics in Two Datasets

Metrics Name Symbol

Code Metrics in the tera-PROMISE dataset [32], [33]

Average Method Complexity AMC
Average McCabe Avg_CC
Afferent couplings Ca
Cohesion Among Methods of class CAM
Coupling Between Methods CBM
Coupling Between Object classes CBO
Efferent couplings Ce
Data Access Metric DAM
Depth of Inheritance Tree DIT
Depth of Inheritance Coupling IC
Lack of Cohesion in Methods LCOM
Lack of Cohesion in Methods 3 LCOM3
Lines of Code LOC
MaximumMcCabe Max_CC
Measure of Function Abstraction MFA
Measure of Aggregation MOA
Number of Children NOC
Number of Public Methods NPM
Response for a Class RFC
Weighted Methods per Class WMC

Code Metrics and Change Metrics in the Bug prediction dataset [34]

CK metrics (i.e., CBO, DIT, LCOM, NOC, RFC, WMC)

Lines of Code LOC
Number of other classes referenced by the class FanOut
Number of other classes that reference the class FanIn
Number of Attributes NOA
Number of Public Attributes NOPA
Number of Private Attributes NOPRA
Number of Attributes Inherited NOAI
Number of Methods NOM
Number of Public Methods NOPM
Number of Private Methods NOPRM
Number of Methods Inherited NOMI
Number of revisions NR
Number of times file has been refactored NREF
Number of times file was involved in bug-fixing NFIX
Number of authors who committed the file NAUTH
Lines added and removed (sum, max, average) LINES
Codechurn (sum, maximum and average) CHURN
Change set size (maximum and average) CHGSET
Age and weighted age AGE

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

Table 3 gives the definitions of three effort-aware bug
prediction models [36]. In experiments, we have evaluated
the performances of these three models, and observed that
the model Ree [26] achieved the best performance (both by
itself and with top-core).

4.2 The Proposed Top-Core Equation

As mentioned in the previous section, effort-aware bug pre-
diction models take the efforts to inspect or test the software
modules into consideration, thus can improve the cost effec-
tiveness of bug prediction models. On the other hand, as

Fig. 5. The buggy classes’ percentages in different k-cores of the 18 subject software systems. For each k value, the number of nodes (classes) in
the corresponding k-core is given in the parentheses. A few k values which can be easily inferred are omitted, considering the space of x-axis.

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 353

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

observed in Section 3.2 and Fig. 5, classes that are located in
the inner cores of CDN are more likely to be buggy. Can we
incorporate such knowledge into existing effort-aware bug
prediction models? In this section, we propose a simple but
effective equation – top-core, to further improve the ranking
of classes based on the output of effort-aware models.

In top-core, for a certain effort-aware model R, the
improved relative risk of class c is:

Rtop�core cð Þ ¼ R cð Þ � coreness cð Þ; (1)

where coreness cð Þ is the coreness of c in CDN, after apply-
ing k-core decomposition on this CDN. For instance, when
the effort-aware model Ree [26] (see definitions in Table 3) is
used, the improved relative risk of c is:

Rtop�core cð Þ ¼ p cð Þ � coreness cð Þ
E cð Þ : (2)

Then classes in the suspicious class list are ranked using the
improved relative risk Rtop�core cð Þ. By using this simple equa-
tion, top-core further prioritizes the classes in the inner cores of
CDN in the suspicious class list produced by effort-aware
models, by increasing the relative risks of the classes located in
the inner cores. The intuition of themultiplication inEquation 1
is similar to the intuitions of the division and multiplication
used in the Rad, Rdd, and Ree models, which are used to
increase the relative risks of the classes with less inspection
effort. Considering effort-aware models already incorporate
the predicted probability of c to be buggy (e.g., p cð Þ in
Equation (2)) and the efforts required to inspect or test c (e.g.,
E cð Þ in Equation (2)). Equation (1) can produce amore reason-
able ranking of classes. Such ranking includes the prediction
results, the efforts, and the information of bug distribution in
k-cores, thus can produce amore effective suspicious class list.

In a word, top-core rearranges the suspicious class list pro-
duced by effort-aware bug prediction model, since classes in
inner cores have stronger possibilities to be buggy, as observed
in Section 3.2 and Fig. 5. The purpose of this equation is to help
the testers or code reviewers locate the real bugs more quickly
and easily. In practice, when there are usually limited resour-
ces for testing or code inspection, the testers or code reviewers
cannot test or inspect all the suspicious classes. The equation is
especially useful under such circumstances.

5 EMPIRICAL STUDY

5.1 Experiment Design

To evaluate the effectiveness of the proposed top-core
approach, we designed and conducted thorough bug

prediction experiments applying the approach to all the 18
subject software systems. In our experiment, we investigated
the effectiveness of top-core in the following two bug predic-
tion scenarios: (1) cross-validation; (2) forward-release.

1) Cross-Validation. Cross-validation is a most widely-
used method to evaluate bug prediction models [37]. We
used threefold (3*3) cross-validation in this experiment.
Specifically, in each single run of this experiment, the origi-
nal bug data set is randomly split into three parts, two
thirds of the instances are used to train the bug prediction
model, and the rest of the instances are used to evaluate the
model. For each subject system, we repeated the 3*3 cross-
validation for 10 times to reduce the bias caused by the ran-
dom split of instances and hence get a more realistic esti-
mate of the proposed approach’s performance.

2) Forward-Release. Forward-release prediction has been
considered more suitable and practical when evaluating
bug prediction approaches [12], which uses the bug data in
the earlier release to predict the bug proneness in the later
release of a software project. For each subject system, the
experiment was repeated for 10 times to reduce the bias
caused by the randomness in the experiment. It has to be
noticed that the bug data of the project Eclipse JDT Core,
Equinox framework and Lucene, which is from the “Bug
prediction dataset”, and the bug data of the project Tomcat,
which is from the “tera-PROMISE dataset” (see Section 3.1),
only have records for a single version. Thus, these projects
cannot be used in the forward-release prediction scenario.
Table 4 gives the versions of the 14 subject systems in
forward-release experiment. For each system, the version
used in training the bug prediction model is first given,
followed by the version used in the testing process of the
bug prediction model.

5.2 Bug Prediction Models

To evaluate the proposed top-core equation, two widely-
used machine learning techniques have been used to
build the bug prediction models: Random Forest (RF) and
Logistic Regression (LR). Implementation of these techni-
ques is based on the open-source Python machine learn-
ing framework scikit-learn.5 The grid search function of
scikit-learn was used for tuning these two machine learn-
ing techniques [38].

1) Random Forest (RF). Random Forest [39] is a forest of
many decision trees. It is an ensemble learning method
which outputs the class which is the mode of the output of

TABLE 3
Definitions of Three Effort-Aware Bug Prediction Models [36]

Model Prediction target Relative risk

Rad [24] p cð Þ p cð Þ � 1� E cð Þ
Emax

� �
Rdd [24], [25] Y cð Þ Y cð Þ

E cð Þ
Ree [26] p cð Þ p cð Þ

E cð Þ

Note that: p cð Þ is the probability that class c to be buggy; Y cð Þ is the binary
prediction whether class c is buggy or not; E cð Þ is the effort required to inspect
c, and Emax is the maximum value of E xð Þ, 8x 2 C.

TABLE 4
The Versions of the Subject Systems Used in

Forward-Release Prediction Scenario

Systems Versions Systems Versions

Camel 1.4, 1.6 Jppf 4.2, 5.0
DrJava 20080106, 20090821 Jump 1.8, 1.9
Genoviz 6.2, 6.3 Log4j 1.0, 1.1
HtmlUnit 2.6, 2.7 Poi 2.5, 3.0
Ivy 1.4, 2.0 Synapse 1.1, 1.2
Jikes RVM 2.0, 3.0 Velocity 1.5, 1.6
Jmol 5.0, 6.0 Xalan 2.5, 2.6

5. http://scikit-learn.org/stable/

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

all individual decision trees. It can overcome the overfitting
problem of decision tree.

2) Logistic Regression (LR). Logistic Regression [40] is a
widely-used classification technique which measures the
relationship between the binary dependent variable and
one or more independent variables by estimating probabili-
ties using a logistic function. One main benefit of using
logistic regression over other types of statistical models is
that its parameters have intuitive and interpretable mean-
ings [41].

Random Forest and Logistic Regression have been
widely used in software bug prediction researches [22],
[42], [43], [44], [45], [46] and have been believed to have
good bug prediction performances. For instance, in a sys-
tematic study on bug prediction techniques, Hall et al. con-
cluded that Naive Bayes and Logistic Regression seem to be
the techniques that are performing relatively well, although
they are relatively simple compared with other machine
learning techniques [22].

5.3 Evaluation Metric

A widely-used evaluation metric in effort-aware bug pre-
diction is Popt [47], which is defined as 1� Dopt, where Dopt

is the area between the LOC-based cumulative lift charts of
the optimal model and the prediction model, as shown in
Fig. 6. In LOC-based cumulative lift chart, the x-axis is con-
sidered as the cumulative percentage of SLOC of the classes
selected from the suspicious class list and the y-axis is the
cumulative percentage of real bugs found in these selected
classes. In the optimal model, all the classes are sorted by
their actual bug density in descending order. On the other
hand, the worst model is built by sorting all the classes
according to their actual bug density in ascending order.
Popt can be normalized as follows [25]:

Popt mð Þ ¼ 1� Area optimalð Þ �Area mð Þ
Area optimalð Þ �Area worstð Þ ;

where Area optimalð Þ, Area mð Þ and Area worstð Þ represent
the areas under the curves corresponding to the best model,
the prediction model m and the worst model, respectively.
In most of the previous researches, Popt is usually measured
at the effort=20% point (the leftmost vertical line in Fig. 6).
In this study, Popt is also measured at the effort=30% and

40% point (the other two vertical lines in Fig. 6) to provide a
more thorough evaluation. Popt has been widely used as the
major evaluation metric in previous related works [25], [47],
[48], [49], [50], [51].

5.4 Method to Handle the Class-Imbalance Problem

In software bug prediction, the bug datasets usually tend to
contain much more bug-free instances (majority) than
buggy instances (minority), which can also be observed in
Table 1. Such class-imbalance problem [52] is common and can
greatly influence the performance of bug prediction models.
In this study, a newly proposed method, SMOTUNED [53],
is used to handle the class imbalance problem. According to
this recent study, in the overwhelming majority of papers
(85 percent), software engineering researches use SMOTE
(Synthetic Minority Oversampling Technique) [54] to fix
data imbalance [53]. SMOTUNED uses Differential Evolu-
tion (DE) [55] to automatically explore the parameter space
of SMOTE, and it can achieve significant improvement over
SMOTE [53]. We have re-implemented SMOTUNED based
on referencing to the original implementation provided by
its authors6 [53]. It should be noticed that SMOTUNED is
only applied on the training dataset in the cross-validation
and forward-release scenarios.

5.5 Baseline Methods and the Variant of Top-Core

In the empirical study, the effort-aware models in Table 3
with the two machine learning techniques in Section 5.2 are
treated as the first baseline method. In Complex Network the-
ory, the network measures Betweenness Centrality [56] and
PageRank [57] are also widely used as metrics to quantify a
node’s importance. They have also been used as features in
software bug prediction [4], [7]. In this study, these two net-
work measures are also used as baseline methods. They are
used by simply replacing coreness cð Þ in Equation 1 with the
Betweenness Centrality and PageRank values of c in CDN.

Based on the definitions in Section 2.1, it can be noticed
that the concept of coreness is closely related to the node’s
degree in CDN. To thoroughly investigate the effects of k-
core decomposition, we should also compare top-core equa-
tion with the concept of node degree. Thus, we also pro-
posed a variant equation of top-core using the degree
concept. The variant equation replaces the coreness metric in
Equation 1 with the degree metric. The variant equation is
named as top-degree. For instance, when the effort-aware
model Ree is used, top-degree is formalized as:

Rtop�degree cð Þ ¼ p cð Þ � degree cð Þ
E cð Þ ; (3)

where degree cð Þ is the node degree of c in CDN. In experi-
ments, top-degree is also evaluated. The performances of all
the methods are evaluated using the Popt metric introduced
in Section 5.3.

6 EXPERIMENTAL RESULTS

In this section, the results of the aforementioned experi-
ments are given. First, the results and discussions of the

Fig. 6. LOC-based cumulative lift chart.

6. http://tiny.cc/smotuned

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 355

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

cross-validation scenario are shown, followed by the results
and discussions of the forward-release scenario.

6.1 Cross-validation

Fig. 7 shows the LOC-based cumulative lift charts (see the
definitions in Section 5.3), in one simulation in the cross-
validation scenario, of six subject systems using the two
machine learning techniques and the effort-aware model
Ree with different methods at different efforts levels,
respectively.

For each subject system, the figure shows the curves of
the optimal model, the worst model, the Ree model, and the
models that combine Ree with different measures using
Equation (1) (e.g., “Ree+top-core” and “Ree+top-degree” in
Fig. 7), respectively. Based on Fig. 7, it can be observed that
the models that combine Ree with top-core and top-degree
usually achieve the best performances, compared with
the models using Betweenness Centrality (abbreviated to
“Betweenness” or “Between.”) and PageRank (abbreviated
to “Page.”), and Ree alone.

Fig. 7 shows the results of one simulation. As mentioned
in Section 5.1, each threefold (3*3) cross-validation experi-
ment has been conducted for 10 times to reduce the bias
caused by the randomness. Fig. 8 gives the box plots of
Popts in 10 experiments of these six subject systems at differ-
ent efforts levels, respectively. It can be observed that in
these Figures, the models Ree+top-core and Ree+top-degree
still achieve the best performance, which is in line with the
results in Fig. 7.

Tables 6, 7, 8 list the mean values of Popts in the afore-
mentioned experiments for all the 18 subject systems at

different efforts levels, respectively. For each system, the
tables first give the mean values of Popts of different models.
Largest Popt value in each row is in bold. In each experi-
ment, the Wilcoxon signed-rank test is used to investigate
the statistical significance of the differences of: 1) top-degree
versus Ree (e.g., degree versus Ree), 2) top-core versus Ree,
and 3) top-degree versus top-core. In each test, > means
the former is statistically greater than the latter, and < vice
versa. The ¼means there is no statistical difference between
the two group of results, which is to say the null hypothesis
in the Wilcoxon signed-rank test cannot be rejected. **
means the 0.01 significant level, which represents that the
p-value< 0.01 in the Wilcoxon signed-rank test. While *
means the 0.05 significant level. The row Average in each
table gives the average values of Popts of different models.
Also the percentage of difference of a certain model com-
pared with Ree is shown. The last row in each table summa-
rizes the Win/Tie/Loss analysis results when comparing
each measure with the baseline model Ree based on quanti-
tative results and statistical tests.

We take Table 6 as an example to analyze the results in
Tables 6 , 7, 8. Based on Table 6, it can be observed that for
the 18 subject systems, top-core significantly improves the
effort-aware model Ree for 14 subject systems (Win: 14).
There is only one subject system for which the performance
is worse than the original Ree model (Loss: 1). In average,
top-core improves the model’s performance by 11.02 percent.
Although top-degree achieves better performance in term of
the average value (11.81 percent). Based on the the Win/
Tie/Loss results, it can be observed that top-degree is less
stable than top-core since for the former, there are only nine

Fig. 7. LOC-based cumulative lift charts of six subject systems using Random Forest (RF) and Logistic Regression (LR) at different efforts levels in
the cross-validation scenario.

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

systems (Win: 9) for which the performance is improved.
There are also four subject systems (Loss: 4) for which the
performance of top-degree is worse than the Ree model.

Table 7 shows the results of Popts when using Logistic
Regression at the efforts level 30 percent. And Table 8 gives
the results when using Random Forest at the efforts level
40 percent. Similar results can be observed in these two
tables. For instance, in Table 8, there are 16 subject systems
(Win: 16) for which the performance is statistically signifi-
cantly improved when using top-core.

In general, when we summarize the results of Random
Forest (of which efforts level 30 percent’s results are not
shown), there are 54 (18� 3) experiments in total, and in
85.2 percent (ð14þ 16þ 16Þ=54) experiments, top-core statis-
tically significantly outperforms baseline methods, while
only in 5.6 percent (3=54) experiments top-core introduces
performance degradations. In average, bug prediction mod-
el’s performance is improved by 11.5 percent.

To provide a more thorough evaluation on the proposed
equation. Similar to Tables 6, 7, 8, Table 5 shows the results
when using the effort-aware model Rdd and Random Forest
at efforts level 20 percent. Due to the limited space, statisti-
cal results are omitted in Table 5. Briefly speaking, similar
results can be observed: based on the mean values of Popts,

Fig. 8. Box plots ofPopts in six experiments usingRandomForest (RF) and Logistic Regression (LR) at different efforts levels in the cross-validation scenario.

TABLE 5
Comparison of Popt When Using Rdd and Random Forest

in the Cross-Validation Scenario (effort=20%)

System Rdd top-degree top-core

Camel 0.348 0.398 0.376
DrJava 0.333 0.443 0.380
Eclipse JDT Core 0.327 0.324 0.363
Equinox Framework 0.559 0.540 0.594
Genoviz 0.342 0.350 0.342
HtmlUnit 0.256 0.287 0.312
Ivy 0.191 0.200 0.203
Jikes RVM 0.137 0.242 0.217
Jmol 0.335 0.474 0.382
Jppf 0.366 0.362 0.389
Jump 0.159 0.162 0.162
Log4j 0.384 0.603 0.480
Lucene 0.378 0.424 0.404
Poi 0.535 0.493 0.564
Synapse 0.344 0.358 0.345
Tomcat 0.244 0.212 0.231
Velocity 0.453 0.447 0.469
Xalan 0.498 0.448 0.471

Average 0.344 0.376 +9.30% 0.371 +7.85%

Win/Tie/Loss 7/9/2 12/5/1

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 357

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

top-core and top-degree significantly improve the baseline
model’s performance. Based on the Win/Tie/Loss results, it
can be concluded top-core performs better than top-degree
when Rdd is used.

In a word, we can conclude that in the cross-validation
scenario, top-core and its variant model top-degree usually
significantly outperform the baseline methods. In most of
the experiments, the mean value of Popt is statistically sig-
nificantly improved after using the proposed top-core equa-
tion. Although top-degree performs slightly better than top-
core in terms of average Popt values, we think average values

are coarse-grained measures which might lose some impor-
tant information. The Win/Tie/Loss results show that top-
core outperforms top-degree, and top-degree is less stable than
top-core. Thus, we recommend practitioners to use top-core
in software defect prediction practices.

6.2 Forward-Release

Discussions on the experimental results in the forward-
release scenario are similar to those in the cross-validation
scenario. Similarly, Fig. 9 shows the LOC-based cumulative
lift charts, in one simulation, of three subject systems using

TABLE 7
Comparison of Popt When Using Logistic Regression in the Cross-Validation Scenario (effort=30%)

System Ree Betweenness PageRank top-degree top-core degree vs. Ree core vs. Ree degree vs. core

Camel 0.431 0.356 0.455 0.514 0.489 > , ** > , ** > , **
DrJava 0.276 0.211 0.211 0.440 0.333 > , ** > , ** > , **
Eclipse JDT Core 0.396 0.305 0.415 0.416 0.425 > , * > , ** ¼
Equinox Framework 0.592 0.472 0.576 0.600 0.632 ¼ > , ** < , **
Genoviz 0.398 0.245 0.266 0.477 0.483 > , ** > , ** ¼
HtmlUnit 0.311 0.082 0.082 0.372 0.375 > , ** > , ** ¼
Ivy 0.253 0.292 0.236 0.258 0.252 ¼ ¼ ¼
Jikes RVM 0.211 0.011 0.011 0.264 0.315 > , ** > , ** < , **
Jmol 0.346 0.283 0.327 0.529 0.423 > , ** > , ** > , **
Jppf 0.374 0.120 0.120 0.410 0.421 > , ** > , ** ¼
Jump 0.231 0.213 0.196 0.382 0.320 > , ** > , ** > , **
Log4j 0.413 0.501 0.558 0.655 0.505 > , ** > , ** > , **
Lucene 0.472 0.529 0.549 0.568 0.509 > , ** > , ** > , **
Poi 0.640 0.309 0.485 0.594 0.647 < , ** ¼ < , **
Synapse 0.435 0.437 0.474 0.451 0.429 ¼ ¼ ¼
Tomcat 0.300 0.241 0.267 0.330 0.333 ¼ > , * ¼
Velocity 0.642 0.522 0.633 0.654 0.665 ¼ > , * ¼
Xalan 0.664 0.471 0.642 0.600 0.648 < , ** < , ** < , **

Average 0.410 0.311
�24.15%

0.361
�11.95%

0.473
þ15.37%

0.456
þ11.22%

Win/Tie/Loss 2/4/12 4/4/10 11/5/2 14/3/1

TABLE 6
Comparison of Popt When Using Random Forest in the Cross-Validation Scenario (effort=20%)

System Ree Betweenness PageRank top-degree top-core degree vs. Ree core vs. Ree degree vs. core

Camel 0.423 0.323 0.415 0.492 0.466 > , ** > , ** > , **
DrJava 0.299 0.224 0.224 0.403 0.334 > , ** > , ** > , **
Eclipse JDT Core 0.384 0.233 0.356 0.343 0.411 < , ** > , ** < , **
Equinox Framework 0.622 0.438 0.582 0.592 0.649 < , ** > , ** < , **
Genoviz 0.237 0.104 0.125 0.355 0.352 > , ** > , ** ¼
HtmlUnit 0.238 0.050 0.050 0.270 0.300 > , ** > , ** < , **
Ivy 0.192 0.228 0.221 0.246 0.221 > , ** > , * ¼
Jikes RVM 0.199 0.007 0.007 0.192 0.266 ¼ > , ** < , **
Jmol 0.285 0.206 0.207 0.470 0.377 > , ** > , ** > , **
Jppf 0.354 0.108 0.108 0.335 0.372 ¼ ¼ < , **
Jump 0.264 0.145 0.130 0.344 0.324 > , ** > , ** > , **
Log4j 0.395 0.349 0.388 0.682 0.521 > , ** > , ** > , **
Lucene 0.443 0.461 0.498 0.514 0.470 > , ** > , ** > , **
Poi 0.623 0.237 0.392 0.560 0.628 < , ** ¼ < , **
Synapse 0.439 0.408 0.467 0.464 0.446 ¼ ¼ ¼
Tomcat 0.259 0.186 0.197 0.276 0.282 ¼ > , ** ¼
Velocity 0.553 0.432 0.551 0.560 0.586 ¼ > , ** < , **
Xalan 0.654 0.414 0.601 0.562 0.607 < , ** < , ** < , **

Average 0.381 0.253
�33.60%

0.307
�19.42%

0.426
þ11.81%

0.423
þ11.02%

Win/Tie/Loss 0/4/14 1/5/12 9/5/4 14/3/1

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

different models at different efforts levels, respectively. Sim-
ilar to the results in Fig. 7, it can be observed that the models
that combine Ree with top-core and top-degree usually achieve
the best performances, compared with other baseline net-
work measures, and Ree alone.

Similar to the experiments in the cross-validation sce-
nario, experiments in the forward-release scenario have
been conducted for 10 times to reduce the bias caused by
the randomness in the experiments. Fig. 10 shows the box
plots of Popts in 10 experiments of these three subject sys-
tems, respectively.

Based on Fig. 10, it can be concluded that for these
three subject systems, the models Ree+top-degree and
Ree+top-core still achieve better performances, which is
in line with Fig. 9.

Similar to Tables 6 , 7, 8, Table 9 gives the mean values of
Popts for 10 simulations of each subject systems in the for-
ward-release scenario when using Random Forest and
Logistic Regression. Since the only randomness in the for-
ward-release scenario is in the SMOTUNED algorithm,

there is little difference between results in each simulation.
Thus, most of the results’ differences are statistically signifi-
cant between each pair of models. So the statistical tests’
results are omitted in Table 9.

In Table 9, the mean values of Popts are given at different
efforts levels. Still, we conduct similar analysis on Table 9:
in each row for one of the machine learning algorithms, the
largest Popt value is in bold. In Table 9, the results of top-core
and top-degree are in gray background when they are smaller
than the results of Ree, which means that the two equations
introduce degradations in the corresponding experiments.

If we treat each row in Table 9 when using Random For-
est as an independent experiment, then we have 42 (14� 3)
experiments in total. Then there are 80.95 percent (34=42)
experiments in which top-core outperforms Ree, and there
are 71.4 percent (30=42, see the Win/Tie/Loss results in
the last row in Table 9) experiments in which top-degree
outperforms Ree. For the experiments in which top-core
or top-degree introduce performance degradations, the
average degradation of top-degree (compared with Ree) is

TABLE 8
Comparison of Popt When Using Random Forest in the Cross-Validation Scenario (effort=40%)

System Ree Betweenness PageRank top-degree top-core degree vs. Ree core vs. Ree degree vs. core

Camel 0.476 0.394 0.518 0.571 0.539 > , ** > , ** > , **
DrJava 0.367 0.244 0.244 0.540 0.440 > , ** > , ** > , **
Eclipse JDT Core 0.450 0.337 0.457 0.459 0.489 ¼ > , ** < , **
Equinox Framework 0.614 0.502 0.612 0.639 0.655 > , ** > , ** < , **
Genoviz 0.412 0.295 0.340 0.519 0.507 > , ** > , ** ¼
HtmlUnit 0.372 0.088 0.088 0.453 0.465 > , ** > , ** < , *
Ivy 0.271 0.340 0.313 0.343 0.333 > , ** > , ** ¼
Jikes RVM 0.295 0.009 0.010 0.389 0.393 > , ** > , ** ¼
Jmol 0.363 0.311 0.381 0.549 0.447 > , ** > , ** > , **
Jppf 0.470 0.164 0.176 0.500 0.541 > , ** > , ** < , **
Jump 0.385 0.301 0.301 0.501 0.447 > , ** > , ** > , **
Log4j 0.509 0.531 0.579 0.739 0.606 > , ** > , ** > , **
Lucene 0.557 0.587 0.637 0.652 0.602 > , ** > , ** > , **
Poi 0.678 0.369 0.560 0.652 0.673 < , * ¼ < , **
Synapse 0.485 0.492 0.530 0.518 0.501 ¼ > , * ¼
Tomcat 0.360 0.293 0.337 0.404 0.391 > , * > , ** ¼
Velocity 0.633 0.530 0.651 0.664 0.664 > , * > , ** ¼
Xalan 0.710 0.527 0.690 0.640 0.685 < , ** < , ** < , **

Average 0.467 0.351
�24.84%

0.412
�11.78%

0.541
þ15.85%

0.521
þ11.56%

Win/Tie/Loss 2/3/13 5/5/8 14/3/1 16/1/1

Fig. 9. LOC-based cumulative lift charts of three subject systems using Random Forest (RF) and Logistic Regression (LR) at different efforts levels in
the forward-release scenario.

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 359

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

11.75 percent, while the average degradation of top-core is
8.04 percent.

Results of Logistic Regression are similar to those of
Random Forest. There are 80.95 percent (34/42) experi-
ments in which top-core outperform Ree. The average degra-
dations of top-degree and top-core are 10.21 and 7.67 percent,
respectively.

Generally speaking, results in Table 9 are not as signifi-
cant as those in Table 6, 7, 8, since there are 19 percent
experiments in which the original effort aware model Ree

performs better than top-core. However, there are still 80.95
percent experiments in which top-core achieves a better per-
formance, and in average for Random Forest, bug predic-
tion model’s performance is improved by 12.6 percent
when using top-core.

Considering the performance degradations, still we rec-
ommend using top-core in practice since it introduces accept-
able performance degradations (8.04 and 7.67 percent) in a
few situations. Moreover, the Win/Tie/Loss results shows

that top-core outperforms top-degree in the forward-release
scenario.

To sum up, based on the experimental results in the
cross-validation and forward-release scenarios, it can be
concluded that the proposed top-core equation can signifi-
cantly improve the practical application of effort-aware bug
prediction models. Although top-degree outperforms top-core
in terms of the average value of Popt, the Win/Tie/Loss
results signify that top-core outperforms top-degree in both
scenarios. Thus, we recommend practitioners always use
top-core in software defect prediction practices.

7 DISCUSSION

7.1 The Widely Existed Tendency

In this paper, we report an interesting and widely existed
tendency: for classes in k-cores of CDN with larger k values,
there is a stronger possibility for them to have bugs. We
have also conducted the analysis on some newly published
software bug datasets. For instance, Table 10 shows the
basic statistics on three subject system from a new software
bug data repository provided by Ferenc et al. [58] in 2018,
which is called the GitHub Bug Dataset. Fig. 11 shows the
buggy classes’ percentages in different k-cores of these three
subject software systems. It is interesting to observe that
these subject systems also exhibit such tendency. We believe
the proposed top-core equation is also useful for this bug
data repository.

Although the proposed top-core equation in this paper is
mainly based on effort-aware models. In our ongoing
research, it is observed that the basic idea of top-core can
also be combined with unsupervised models, e.g., Manual-
Down and ManualUp [59]. Promising preliminary results
have been observed. For instance, it can improve Manual-
Down in the bug classification scenario. We also encourage
the community and practitioners to further evaluate appli-
cations of the observed tendency and the proposed method.

7.2 Comparison of the Notions of Coreness
and Degree

As discussed earlier, the notion of coreness is closely related
to the node’s degree. It is also observed that, the variant
equation top-degree indeed outperforms top-core in terms of
average Popt values, although the former is less stable and
the latter has better Win/Tie/Loss results.

It is necessary to investigate whether the observed ten-
dency still exists when degree is analyzed in a similar way.
Fig. 12 shows the results of such analysis on Camel,
Synapse, and Velocity. In each figure, the x-axis is the
node’s degree in CDN, the y-axis is the percentage of buggy
classes in the classes whose degree is greater than or equal
to the corresponding degree. It can be noticed that there is
no clear common tendency. Similar results exist for other
subject systems.

We think the performance difference between the notions
of coreness and degree is partially because of that coreness
uses a more conservative way to quantify the importance
of a node in CDN. For instance, the largest node degree
in Camel’s CDN is 497 (as shown in Fig. 12), whereas
the largest k value in k-core decomposition on Camel’s
CDN is only 7 (as shown in Fig. 5).

Fig. 10. Box plots of Popts in three experiments using Random Forest
(RF) and Logistic Regression (LR) at different efforts levels in the for-
ward-release scenario.

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

Another issue should be discussed is that as observed in
Fig. 3, k-core decomposition ignores the directions of the
edges in CDN. Whether the information of direction is use-
ful for the proposed approach needs further investigation.
In this paper, we report the experimental results of the tera-
PROMISE dataset in the cross-validation scenario when the
in-degree or out-degreemeasures are considered separately.

Table 11 shows results of this experiment. Entries in
Table 11 are similar to those in Table 6 , 7, 8. It should be
noticed that the mean values of Popts of Ree and top-core are

slightly different from those in Table 6, such difference is
because of the randomness in cross-validation. Generally,
based on Table 11, it can be concluded that using in-degree
or out-degree alone cannot improve the performance of
effort-aware bug prediction model. It is also interesting to
observe that for two subject systems, i.e., Ivy and Log4j, in-
degree outperforms coreness, while there is no subject sys-
tem for which out-degree outperforms coreness. Such
results are in accordance with previous experimental
results. For instance, Nguyen et al. [7] observed that in their

TABLE 9
Comparison of Popt in the Forward-Release Scenario

System
PoptswhenusingRandomForest in the forward-release scenario PoptswhenusingLogisticRegression in the forward-release scenario

Ree Between. Page. top-degree top-core Ree Between. Page. top-degree top-core

effort=20%

Camel 0.400 0.321 0.393 0.460 0.462 0.382 0.332 0.382 0.453 0.434
DrJava 0.174 0.205 0.205 0.140 0.144 0.136 0.176 0.176 0.122 0.125
Genoviz 0.211 0.102 0.131 0.374 0.351 0.238 0.101 0.125 0.366 0.383
HtmlUnit 0.187 0.083 0.083 0.237 0.243 0.212 0.070 0.068 0.241 0.247
Ivy 0.182 0.205 0.239 0.264 0.222 0.162 0.169 0.188 0.219 0.195
Jikes RVM 0.133 0.004 0.004 0.124 0.160 0.142 0.009 0.009 0.211 0.184
Jmol 0.198 0.249 0.237 0.455 0.289 0.188 0.293 0.244 0.456 0.247
Jppf 0.264 0.094 0.094 0.275 0.301 0.307 0.122 0.122 0.313 0.340
Jump 0.212 0.150 0.130 0.359 0.252 0.084 0.068 0.061 0.210 0.120
Log4j 0.455 0.349 0.388 0.676 0.575 0.412 0.372 0.397 0.675 0.525
Poi 0.583 0.229 0.382 0.538 0.583 0.571 0.210 0.389 0.546 0.582
Synapse 0.396 0.400 0.458 0.458 0.418 0.345 0.383 0.442 0.444 0.371
Velocity 0.512 0.421 0.531 0.550 0.570 0.494 0.430 0.518 0.549 0.566
Xalan 0.634 0.428 0.613 0.582 0.615 0.625 0.434 0.608 0.586 0.610

Average 0.324
0.231

�28.70%
0.278

�14.20%
0.392

þ20.99%
0.370

þ14.20%
0.307 0.226

�26.38%
0.266

�13.36%
0.385

þ25.41%
0.352

þ14.66%

effort=30%

Camel 0.442 0.360 0.456 0.512 0.508 0.418 0.357 0.440 0.493 0.470
DrJava 0.223 0.304 0.303 0.170 0.181 0.200 0.258 0.258 0.155 0.159
Genoviz 0.295 0.187 0.245 0.443 0.456 0.364 0.202 0.249 0.454 0.471
HtmlUnit 0.318 0.096 0.095 0.326 0.336 0.317 0.072 0.068 0.334 0.344
Ivy 0.200 0.275 0.278 0.299 0.280 0.186 0.208 0.210 0.236 0.220
Jikes RVM 0.181 0.005 0.005 0.265 0.248 0.202 0.009 0.009 0.322 0.262
Jmol 0.264 0.283 0.302 0.457 0.364 0.268 0.320 0.329 0.453 0.332
Jppf 0.338 0.105 0.104 0.364 0.388 0.382 0.123 0.123 0.394 0.413
Jump 0.276 0.251 0.250 0.423 0.327 0.145 0.156 0.150 0.306 0.201
Log4j 0.530 0.454 0.501 0.699 0.609 0.463 0.464 0.507 0.692 0.578
Poi 0.631 0.320 0.494 0.609 0.620 0.620 0.316 0.490 0.591 0.617
Synapse 0.418 0.446 0.475 0.467 0.427 0.377 0.431 0.454 0.444 0.396
Velocity 0.569 0.485 0.592 0.612 0.624 0.561 0.496 0.585 0.608 0.616
Xalan 0.676 0.494 0.658 0.617 0.656 0.663 0.493 0.661 0.622 0.657

Average 0.383 0.290
�24.28%

0.340
�10.53%

0.447
þ16.71%

0.430
þ12.27%

0.369 0.279
�24.39%

0.324
�12.20%

0.436
þ18.16%

0.410
þ11.11%

effort=40%

Camel 0.478 0.394 0.507 0.553 0.543 0.440 0.388 0.484 0.536 0.506
DrJava 0.294 0.385 0.384 0.204 0.218 0.264 0.322 0.322 0.187 0.191
Genoviz 0.387 0.273 0.340 0.517 0.529 0.451 0.308 0.348 0.533 0.540
HtmlUnit 0.407 0.109 0.107 0.432 0.443 0.392 0.079 0.071 0.413 0.419
Ivy 0.243 0.321 0.335 0.358 0.335 0.226 0.269 0.262 0.290 0.270
Jikes RVM 0.228 0.005 0.005 0.383 0.330 0.252 0.017 0.016 0.424 0.357
Jmol 0.323 0.317 0.354 0.474 0.409 0.287 0.340 0.345 0.433 0.364
Jppf 0.426 0.152 0.153 0.442 0.475 0.439 0.171 0.172 0.468 0.484
Jump 0.343 0.338 0.342 0.487 0.419 0.201 0.223 0.194 0.334 0.263
Log4j 0.532 0.504 0.564 0.727 0.613 0.512 0.518 0.568 0.721 0.602
Poi 0.656 0.384 0.560 0.643 0.649 0.648 0.374 0.544 0.624 0.643
Synapse 0.454 0.474 0.503 0.493 0.460 0.402 0.447 0.459 0.444 0.410
Velocity 0.627 0.524 0.636 0.674 0.667 0.621 0.529 0.636 0.673 0.660
Xalan 0.701 0.545 0.698 0.655 0.689 0.691 0.546 0.698 0.658 0.687

Average 0.436 0.338
�22.48%

0.392
�10.09%

0.503
þ15.37%

0.484
þ11.01%

0.416 0.324
�22.12%

0.366
�12.02%

0.481
þ15.63%

0.457
þ9.86%

Win/Tie/Loss 10/4/28 17/4/21 30/2/10 34/0/8 12/6/24 19/7/16 31/2/9 34/0/8

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 361

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

experiments in-degree achieved the best recall among sev-
eral network measures. It is also interesting for future work
to investigate other network measures’ performances using
the proposed Equation 1 in effort-aware bug prediction.

8 RELATED WORK

8.1 Using Complex Network Theory in Bug
Prediction

Over the past decade, Complex Network theory and related
graph algorithms [1], [2], [3] have been successfully used in
software bug prediction domain. Related researches can be
classified into code-based network and change-based network in
software bug prediction.

In the first category, Zimmermann and Nagappan [4]
proposed to use network measures on the dependency
graph of a software system in bug prediction. They found
that network measures could improve the prediction perfor-
mance by 10 percent in predicting Windows Server 2003
operating system’s post-release bugs. Later, Tosun et al. [6]
reproduced Zimmermann and Nagappan’s work on three
small scale embedded software and two versions of the
Eclipse project. Their results revealed that networkmeasures
were important indicators of defectivemodules for large and
complex systems, but they did not have significant predic-
tive power on small-scale projects. Premraj and Herzig [8]
further replicated and extended these studies, they evalu-
ated network measures’ effectiveness based on three open-
source projects. They investigated network measures’

performances in cross-validation, forward-release, and
cross-project scenarios. Their results showed that although
network measures outperformed code metrics in cross-
validation, they provided no advantage for forward-release
and cross-project scenarios. Recently, Ma et al. [12] further
evaluated the predictive effectiveness of networkmeasure in
effort-aware bug prediction. Chen et al. [11] used network
measures to predict high severity software bugs, and they
found that most networkmeasureswere significantly related
to high severity bug-proneness. To sum up, these studies
have used network metrics derived from software code
dependency networks to improve bug prediction perform-
ances. These studies showed that network metrics are usu-
ally more effective predictors for software bugs, compared
with product and complexitymetrics.

There are other researches further exploiting software
networks’ characteristics in bug prediction. For instance, in
our previous study [10], we proposed two new class cohe-
sion metrics based on community structures of software
Call Graphs. Experiments showed that these new metrics
are effective in predicting software bugs. Recently, Li [13]
proposed a network model (Tri-Relation Network) integrat-
ing developer contribution, module dependency, and devel-
oper collaboration relations, to improve bug prediction.

On the other hand, in the change-based network category,
Pinzger et al. proposed to represent developer contributions
in evolution with a developer-module network named as
contribution network [5]. Then network centrality measures
was used to measure the degree of fragmentation of

Fig. 11. The buggy classes’ percentages in different k-cores of three subject software systems in the GitHub Bug Dataset.

Fig. 12. The buggy classes’ percentages in classes whose degree is greater than or equal to the value in x-axis.

TABLE 10
Subject Software Systems in a New Bug Data Repository – the GitHub Bug Dataset [58]

System Version SLOC # Class NCDN ECDN CRB

T
CCDNj j pbug Website

Elasticsearch fe86edd 355,963 5,440 5,382 26,719 5,335 4.4% www.elastic.co/products/elasticsearch
MapDB 5b4700c 40,312 239 226 509 158 2.7% www.mapdb.org
mcMMO eb359c5 26,483 320 320 1,633 311 11.9% github.com/mcMMO-Dev/mcMMO

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

www.mapdb.org

developer contributions. Experiments on Microsoft Win-
dows Vista binaries showed that network centrality meas-
ures are significant indicator for failure-prone binaries [5].
Later, Herzig et al. proposed to group software changes into
change genealogies [9], which are graphs of changes reflecting
their mutual dependencies. They observed that compared
to prediction models based on code dependency network or
code complexity metrics, change genealogy based predic-
tion methods can achieve better performance [9].

Recently, with the successful applications of network
embedding techniques [60] in many machine learning tasks,
researches started applying network embedding techniques
in software bug prediction. Network embedding can auto-
matically encode software networks into low-dimensional
vector spaces. Recently, followed Herzig et al.’s work [9],
Loyola and Matsuo proposed to use two models origina-
ted from the Natural Language Processing (NLP) area—
SkipGram andCBOW, to automatically generate feature rep-
resentations from change genealogy graph [61]. Recently, we
also proposed to use a new network embedding technique,
node2vec [62], to automatically learn structural features of
CDN into low dimensional vector space [63]. Experimental
results showed that the proposed approach can improve bug
prediction nontrivially.

Generally speaking, existing researches have shown that
Complex Network theory, concepts, and metrics are of great
value in software bug prediction. These studies have laid a
good foundation for us to further use k-core decomposition,
which is an efficient analyzing algorithm in Complex Net-
work theory, in software bug prediction. Our study provide a
new perspective for bug prediction. Instead of proposing or
leveraging newmetrics in software dependency networks, we
use k-core decomposition to analyze bug distribution on Class
Dependency Networks, and observe a new tendency. Based
on this observation, an equation that rearranges the suspicious
class list produced by bug predictionmodels is proposed. The
proposed equation complements existing researches.

8.2 Applications of k-Core Decomposition in
Software Engineering and Other Domains

As discussed in Section 1, there aremany application areas of
k-core decomposition including but not limited to social net-
work analysis [15], visualization of large networks [16], ana-
lyzing protein-protein interaction networks [17], [18], etc.

Researchers in software engineering have already started
using k-core decomposition. Meyer et al. [19] applied k-

core decomposition on Class Dependency Networks to iden-
tifying important classes. They studied three open-source
Java projects over a 10-year period and showed that k-core
decomposition could identify key classes of the correspond-
ing software. Recently, Pan et al. [21] proposed a more
accurate software network considering both the coupling
direction and coupling strength, then proposed a general-
ized k-core decomposition method to more accurately iden-
tify key classes. Pan et al. [20] also constructed weighted
software networks from real-world Java software systems.
They investigated static and evolving properties of the
weighted k-core structure and observed many interesting
features. They also applied the weighted k-core decomposi-
tion method to identify the key classes. Experiments showed
that their approach outperformed other nine approaches.

In a word, in recent years, researches in software engi-
neering have started using k-core decomposition. However,
these studies mainly focused on using k-core decomposition
to identify key classes in software. To the best of our knowl-
edge, our work is the first one that uses k-core decomposi-
tion to understand software bug distribution from a new
perspective. Experimental results also show that, the pro-
posed top-core equation can indeed help the testers or code
reviewers locate the real bugs more quickly and easily.

8.3 Effort-Aware Bug Prediction

As discussed in Section 4.1, in recent years, several effort-
aware bug prediction models have been proposed [24], [25],
[26], aimed to help testers or code reviewers allocate their
resources more effectively. Mende and Koschke for the first
time proposed two models to include the notion of effort
awareness into bug prediction models [24]. Experiments
have shown that both models improve the cost effectiveness
of bug prediction models significantly [24]. Kamei et al.
used the proposed models to evaluate different metrics’
performance in effort-aware bug prediction [25]. We used
the same evaluation metric in [25]. Later, many related
researches evaluated bug prediction models from the effort-
aware perspective [64], [65], or proposed new effort-aware
models [26], [66]. As discussed earlier, in our experiments,
effort-aware models in Table 3 are used and it is observed
that Ree [26] has the best performance. The proposed top-
core equation is observed to significantly improve existing
effort-aware models’ performances. We recommend future
research always use the proposed equation in effort-aware
bug prediction practices.

TABLE 11
Comparison of Popt Using in-degree and out-degree Alone in the Cross-Validation Scenario (effort=20%)

System Ree in-degree out-degree top-core in-degree vs. core out-degree vs. core

Camel 0.424 0.458 0.447 0.470 ¼ < , *
Ivy 0.190 0.266 0.230 0.205 > , ** ¼
Log4j 0.399 0.631 0.532 0.526 > , ** ¼
Poi 0.623 0.541 0.499 0.628 < , ** < , **
Synapse 0.434 0.366 0.375 0.443 < , ** < , **
Tomcat 0.264 0.238 0.276 0.285 < , ** ¼
Velocity 0.556 0.448 0.547 0.589 < , ** < , **
Xalan 0.652 0.444 0.544 0.607 < , ** < , **

Average 0.443 0.424
�4.29%

0.431
�2.71%

0.469
þ5.87%

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 363

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

9 CONCLUSION

In this paper, we have used k-core decomposition on Class
Dependency Networks to analyze software bug distribution
from a new perspective. An interesting and widely existed
tendency has been observed: measurement results have
shown that classes in k-cores with larger k values have
stronger possibility to be buggy. In other words, bugs tend
to cluster towards inner cores. Based on this observation, a
simple but effective equation named as top-core has been
proposed. Top-core rearranges the order of classes in the sus-
picious class list produced by effort-aware bug prediction
models, by prioritizing the suspicious classes in k-cores
with larger k values. Experiments on 18 subject systems
with two machine learning algorithms—Random Forest
and Logistic Regression, have been conducted to evaluate
the effectiveness of the proposed equation. Experimental
results have shown that, in 96 (54þ42) effort-aware bug
prediction experiments in which Random Forest is used,
top-core significantly improved effort-aware bug prediction
model’s performance in 85.2 percent experiments in the
cross-validation scenario and in 80.95 percent experiments
in the forward-release scenario. In average, the bug
prediction model’s performance is improved by 11.5 and
12.6 percent, respectively. It is concluded that the proposed
top-core equation can help the testers or code reviewers
locate the real bugs more quickly and easily. All code and
experimental results are available at: https://github.com/
XJTU-SE/top-core.

In the future, we plan to further leverage the observed
tendency in other software engineering practices that are
related to software quality and bugs, such as test case priori-
tization, fault localization, etc. We also plan to combine the
idea of top-corewith unsupervised models.

ACKNOWLEDGMENTS

This work is partially supported by the National
Key Research and Development Program of China
(2016YFB0800202), National Natural Science Foundation of
China (61602369, 61632015, 61772408, U1766215, 61721002,
61833015), Ministry of Education Innovation Research Team
(IRT_17R86), Shaanxi Province postdoctoral research project
funding (2016BSHEDZZ108), consulting research project of
Chinese academy of engineering “The Online and Offline
Mixed Educational Service System for ’The Belt and Road’
Training in MOOC China”, and Project of China Knowledge
Centre for Engineering Science and Technology.

REFERENCES

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” Nature, vol. 393, no. 6684, 1998, Art. no. 440.

[2] A.-L. Barab�asi and R. Albert, “Emergence of scaling in random
networks,” Sci., vol. 286, no. 5439, pp. 509–512, 1999.

[3] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, genera-
tors, and algorithms,” ACM Comput. Surveys, vol. 38, no. 1, 2006,
Art. no. 2.

[4] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in Proc. ACM/IEEE 30th
Int. Conf. Softw. Eng., 2008, pp. 531–540.

[5] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-
module networks predict failures?” in Proc. 16th ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2008, pp. 2–12.

[6] A. Tosun, B. Turhan, and A. Bener, “Validation of network meas-
ures as indicators of defective modules in software systems,” in
Proc. 5th Int. Conf. Predictor Models Softw. Eng., 2009, Art. no. 5.

[7] T. H. Nguyen, B. Adams, and A. E. Hassan, “Studying the impact
of dependency network measures on software quality,” in Proc.
IEEE Int. Conf. Softw. Maintenance, 2010, pp. 1–10.

[8] R. Premraj and K. Herzig, “Network versus code metrics to pre-
dict defects: A replication study,” in Proc. Int. Symp. Empirical
Softw. Eng. Meas., 2011, pp. 215–224.

[9] K. Herzig, S. Just, A. Rau, and A. Zeller, “Predicting defects using
change genealogies,” in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.,
2013, pp. 118–127.

[10] Y. Qu, X. Guan, Q. Zheng, T. Liu, L. Wang, Y. Hou, and Z. Yang,
“Exploring community structure of software call graph and its
applications in class cohesion measurement,” J. Syst. Softw.,
vol. 108, pp. 193–210, 2015.

[11] L. Chen, W. Ma, Y. Zhou, L. Xu, Z. Wang, Z. Chen, and B. Xu,
“Empirical analysis of network measures for predicting high
severity software faults,” Sci. China Inf. Sci., vol. 59, no. 12, 2016,
Art. no. 122901.

[12] W. Ma, L. Chen, Y. Yang, Y. Zhou, and B. Xu, “Empirical analysis
of network measures for effort-aware fault-proneness prediction,”
Inf. Softw. Technol., vol. 69, pp. 50–70, 2016.

[13] Y. Li, “Applying social network analysis to software fault-
proneness prediction,” Ph.D. dissertation, Univ. Texas Dallas,
Richardson, TX, USA, 2017.

[14] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“k-core decomposition: a tool for the visualization of large scale
networks,” in Advances in Neural Information Processing Systems 18.
Cambridge, MA, USA: MIT Press, 2006, p. 41.

[15] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “Evaluating
cooperation in communities with the k-core structure,” in Proc.
Int. Conf. Adv. Social Netw. Anal. Mining, 2011, pp. 87–93.

[16] Y. Zhang and S. Parthasarathy, “Extracting analyzing and visual-
izing triangle k-core motifs within networks,” in Proc. IEEE 28th
Int. Conf. Data Eng., 2012, pp. 1049–1060.

[17] G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC
Bioinf., vol. 4, no. 1, 2003, Art. no. 2.

[18] S. Wuchty and E. Almaas, “Peeling the yeast protein network,”
Proteomics, vol. 5, no. 2, pp. 444–449, 2005.

[19] P. Meyer, H. Siy, and S. Bhowmick, “Identifying important classes
of large software systems through k-core decomposition,” Adv.
Complex Syst., vol. 17, no. 07n08, 2014, Art. no. 1550004.

[20] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, “Analyzing the structure of
java software systems by weighted k-core decomposition,” Future
Generation Comput. Syst, vol. 83, pp. 431–444, 2018.

[21] W. Pan, B. Song, K. Li, and K. Zhang, “Identifying key classes in
object-oriented software using generalized k-core decom-
position,” Future Generation Comput. Syst., vol. 81, pp. 188–202,
2018.

[22] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in soft-
ware engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,
pp. 1276–1304, Nov./Dec. 2012.

[23] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, “A developer centered bug prediction model,” IEEE
Trans. Softw. Eng., vol. 44, no. 1, pp. 5–24, Jan. 2018.

[24] T. Mende and R. Koschke, “Effort-aware defect prediction mod-
els,” in Proc. 14th Eur. Conf. Softw. Maintenance Reengineering, 2010,
pp. 107–116.

[25] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
and A. E. Hassan, “Revisiting common bug prediction findings
using effort-aware models,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance, 2010, pp. 1–10.

[26] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung, and
Z. Zhang, “Are slice-based cohesion metrics actually useful in
effort-aware post-release fault-proneness prediction? an empirical
study,” IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 331–357,
Apr. 2015.

[27] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik,
H. E. Stanley, and H. A. Makse, “Identification of influential
spreaders in complex networks,” Nature Phys., vol. 6, no. 11,
pp. 888–893, 2010.

[28] L. �Subelj and M. Bajec, “Community structure of complex soft-
ware systems: Analysis and applications,” Physica A: Statistical
Mech. Appl., vol. 390, no. 16, pp. 2968–2975, 2011.

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

[29] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of java
software,”ACMSIGPLANNotices, vol. 41, no. 10, pp. 397–412, 2006.

[30] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in
software,” ACM Trans. Softw. Eng. Methodology, vol. 18, no. 1,
2008, Art. no. 2.

[31] G. Concas, M. Marchesi, C. Monni, M. Orr�u, and R. Tonelli,
“Software quality and community structure in java software
networks,” Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 7, pp. 1063–
1096, 2017.

[32] T. Menzies, R. Krishna, and D. Pryor, “The promise repository
of empirical software engineering data,” Dept. Comput. Sci.,
North Carolina State Univ., 2015. [Online]. Available: http://
openscience.us/repo

[33] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proc. 6th Int.
Conf. Predictive Models Softw. Eng., 2010, Art. no. 9.

[34] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive compari-
son of bug prediction approaches,” in Proc. 7th IEEE Working Conf.
Mining Softw. Repositories, 2010, pp. 31–41.

[35] T. Shippey, T. Hall, S. Counsell, and D. Bowes, “So you need more
method level datasets for your software defect prediction?:
Voil�a!” in Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas., 2016, Art. no. 12.

[36] Y. Guo, M. Shepperd, and N. Li, “Bridging effort-aware prediction
and strong classification: A just-in-time software defect prediction
study,” in Proc. 40th Int. Conf. Softw. Eng.: Companion Proc., 2018,
pp. 325–326.

[37] Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and
B. Xu, “Understanding the value of considering client usage
context in package cohesion for fault-proneness prediction,”
Automated Softw. Eng., vol. 24, no. 2, pp. 393–453, 2017.

[38] C. Tantithamthavorn, S. McIntosh, A. E.Hassan, andK.Matsumoto,
“The impact of automated parameter optimization on defect
prediction models,” IEEE Trans. Softw. Eng., 2018, doi: 10.1109/
TSE.2018.2794977.

[39] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[40] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied
Logistic Regression, vol. 398. Hoboken, NJ, USA: Wiley, 2013.

[41] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: an empirical
study of microsoft windows,” in Proc. ACM/IEEE 32nd Int. Conf.
Softw. Eng., 2010, pp. 495–504.

[42] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 485–496, Jul./Aug. 2008.

[43] B. Caglayan, A. Tosun, A. Miranskyy, A. Bener, and N. Ruffolo,
“Usage of multiple prediction models based on defect categories,”
in Proc. 6th Int. Conf. Predictive Models Softw. Eng., 2010, Art. no. 8.

[44] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 481–490.

[45] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study
to benchmark cross-project defect prediction approaches,” IEEE
Trans. Softw. Eng., vol. 44, no. 9, pp. 811–833, Sep. 2018.

[46] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of sum-
mation to aggregate software metrics hinders the performance of
defect prediction models,” IEEE Trans. Softw. Eng., vol. 43, no. 5,
pp. 476–491, May 2017.

[47] T. Mende and R. Koschke, “Revisiting the evaluation of defect
prediction models,” in Proc. 5th Int. Conf. Predictor Models Softw.
Eng., 2009, Art. no. 7.

[48] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,
A. Sinha, and N. Ubayashi, “A large-scale empirical study of just-
in-time quality assurance,” IEEE Trans. Softw. Eng, vol. 39, no. 6,
pp. 757–773, Jun. 2013.

[49] A. Monden, T. Hayashi, S. Shinoda, K. Shirai, J. Yoshida,
M. Barker, and K. Matsumoto, “Assessing the cost effectiveness of
fault prediction in acceptance testing,” IEEE Trans. Softw. Eng.,
vol. 39, no. 10, pp. 1345–1357, Oct. 2013.

[50] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and
H. Leung, “Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models,” in
Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 157–168.

[51] W. Fu and T. Menzies, “Revisiting unsupervised learning for
defect prediction,” in Proc. 11th Joint Meeting Found. Softw. Eng.,
2017, pp. 72–83. [Online]. Available: http://doi.acm.org/10.1145/
3106237.3106257

[52] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and
S. Mensah, “Mahakil: Diversity based oversampling approach to
alleviate the class imbalance issue in software defect prediction,”
IEEE Trans. Softw. Eng., vol. 44, no. 6, pp. 534–550, Jun. 2018.

[53] A. Agrawal and T. Menzies, “Is better data better than better data
miners?: On the benefits of tuning smote for defect prediction,” in
Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 1050–1061.

[54] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” J. Artif.
Intell. Res., vol. 16, no. 1, pp. 321–357, 2002.

[55] R. Storn and K. Price, “Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces,” J.
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[56] U. Brandes, “A faster algorithm for betweenness centrality,” J.
Math. Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[57] S. Ioana , “A PageRank based recommender system for identify-
ing key classes in software systems,” in IEEE 10th Jubilee Int.
Symp. Appl. Comput. Intell. Informat. (SACI), 2015, pp. 495–500.

[58] R. Ferenc, Z. T�oth, G. Lad�anyi, I. Siket, and T. Gyim�othy, “A pub-
lic unified bug dataset for java,” in Proc. 14th Int. Conf. Predictive
Models Data Analytics Softw. Eng., 2018, pp. 12–21.

[59] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian, and
B. Xu, “How far we have progressed in the journey? an examina-
tion of cross-project defect prediction,” ACM Trans. Softw. Eng.
Methodology, vol. 27, no. 1, 2018, Art. no. 1.

[60] P. Goyal and E. Ferrara, “Graph embedding techniques, applica-
tions, and performance: A survey,” Knowl.-Based Syst., vol. 151,
pp. 78–94, 2018.

[61] P. Loyola and Y. Matsuo, “Learning feature representations from
change dependency graphs for defect prediction,” in Proc. IEEE
28th Int. Symp. Softw. Rel. Eng., 2017, pp. 361–372.

[62] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855–864.

[63] Y. Qu, T. Liu, J. Chi, Y. Jin, D. Cui, A. He, and Q. Zheng,
“node2defect: Using network embedding to improve software
defect prediction,” in Proc. 33rd ACM/IEEE Int. Conf. Automated
Softw. Eng., 2018, pp. 844–849.

[64] X. Tan, X. Peng, S. Pan, and W. Zhao, “Assessing software quality
by program clustering and defect prediction,” in Proc. 18th Work-
ing Conf. Reverse Eng., 2011, pp. 244–248.

[65] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu, “Predicting
vulnerable components via text mining or software metrics? an
effort-aware perspective,” in Proc. IEEE Int. Conf. Softw. Quality
Rel. Secur., 2015, pp. 27–36.

[66] A. Panichella, C. V. Alexandru, S. Panichella, A. Bacchelli, and
H. C. Gall, “A search-based training algorithm for cost-aware
defect prediction,” in Proc. Genetic Evol. Comput. Conf., 2016,
pp. 1077–1084.

Yu Qu received the BS and PhD degrees from
Xi’an Jiaotong University, Xi’an, China, in 2006
and 2015, respectively. He is now a post-doctoral
researcher with the Department of Computer Sci-
ence and Technology, Xi’an Jiaotong University.
His research interests include trustworthy soft-
ware and applying complex network and machine
learning theories to analyzing software systems.
He is a member of the IEEE.

QU ET AL.: USING K-CORE DECOMPOSITION ON CLASS DEPENDENCY NETWORKS TO IMPROVE BUG PREDICTION MODEL’S... 365

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply.

http://openscience.us/repo
http://openscience.us/repo
http://dx.doi.org/10.1109/TSE.2018.2794977
http://dx.doi.org/10.1109/TSE.2018.2794977
http://doi.acm.org/10.1145/3106237.3106257
http://doi.acm.org/10.1145/3106237.3106257

Qinghua Zheng received the BS and MS
degrees in computer science and technology
from Xi’an Jiaotong University, Xi’an, China, in
1990 and 1993, respectively, and the PhD degree
in systems engineering from Xi’an Jiaotong
University, Xi’an, China, in 1997. He was a post-
doctoral researcher with Harvard University in
2002. Since 1995 he has been with the Depart-
ment of Computer Science and Technology,
Xi’an Jiaotong University, and was appointed
director of the Department in 2008 and Cheung

Kong professor in 2009. His research interests include computer net-
work security, intelligent e-learning theory and algorithm, multimedia
e-learning, and trustworthy software. He is a member of the IEEE.

Jianlei Chi received the BS degree in computer
science and technology from Harbin Engineering
University, China, in 2014. He is currently work-
ing toward the PhD degree in the Department
of Computer Science and Technology, Xi’an
Jiaotong University, Xi’an, China. His research
interests include trustworthy software, software
testing, and software behavior analysis.

Yangxu Jin is working toward the MS degree
in the Department of Computer Science and
Technology, Xi’an Jiaotong University, Xi’an,
China. Her research interests include trustworthy
software, defect prediction of software system.

Ancheng He is working toward the MS degree in
the Department of Computer Science and Tech-
nology, Xi’an Jiaotong University, Xi’an, China.
His research interests include trustworthy soft-
ware, security analysis of android system.

Di Cui is working toward the PhD degree in the
Department of Computer Science and Technol-
ogy, Xi’an Jiaotong University, Xi’an, China. His
research interests include trustworthy software,
architecture recovery of software system.

Hengshan Zhang received the PhD degree from
the Department of Computer Science and Tech-
nology, Xi’an Jiaotong University, Xi’an, China, in
2016. He is currently a lecturer with the School of
Computer Science, Xi’an University of Posts and
Telecommunications, Xi’an, China. His research
interests include computing with words, group
decision making, information aggregation, and
trustworthy software.

Ting Liu received the BS degree in information
engineering and the PhD degree in system engi-
neering from the School of Electronic and Infor-
mation, Xi’an Jiaotong University, in 2003 and
2010, respectively. He is a professor with Xi’an
Jiaotong University, China. He was a visiting pro-
fessor with Cornell University during 2016 to
2017. His researches include software engineer-
ing and cyber-physical system. He is a member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 11,2021 at 22:25:35 UTC from IEEE Xplore. Restrictions apply. View publication stats

https://www.researchgate.net/publication/330376569

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

